All-Russian academic journal
“Issues of Cognitive Linguistics”



Author:  A.V. Kolmogorova

Affiliation:  Siberian Federal University

Abstract:  In the article, the author analyzes some preliminary results of current research project that aims at designing a sentiment analysis algorithm that would be able to classify Russian text data after eight classes of emotions articulated in it.
The research based on the technology of “supervised” machine learning uses the training sample built up on the emotion classification of H. Lövheim. The Danish biochemist models classification of emotions measuring the intensity of three monoamines in human organism – serotonin, noradrenaline and dopamine. Using the crowdsourcing principles, we managed to collect a 1500 text items corpus labeled by 36 naïve Russian experts according to the eight classes of emotions pointed out by Lövheim.
Further analysis based on linguistic methods and on the technologies of natural linguistic data processing allowed us to find out some verbal markers for each class of emotions. Furthermore, we formulated the hypothesis about correlations existing between the intensity of such hormones as noradrenaline and serotonin, on the one hand, and certain verbal markers articulated in text data, on the other hand.

Keywords:  sentiment analysis, classification of emotions, verbal markers, ranged classificatory,
supervised machine learning, neuromediators.

References:  Kozerenko A.D., Kreydlin G.E. Frazeologicheskie somatizmy i semioticheskaya kontseptualizatsiya tela // Voprosy yazykoznaniya. 2011. № 6.
S. 54-66.
Martynyuk K.V. Kognitivnaya spetsifika protsessov vospriyatiya khudozhestvennogo teksta // «Rizomorfnyy klubok»: kognitsiya vs kommunikatsiya: monografiya / pod red. A.V. Kolmogorovoy. Krasnoyarsk: Sib. feder. un-t, 2017. S. 77-99.
Potapova R.K., Potapov V.V. Modifikatsiya rechevogo signala kak sledstvie nalichiya emotsional'nykh sostoyaniy «strakh» / «trevozhnost'» // Rechevye tekhnologii. 2012. № 1. S. 52-60.
Potapova R.K., Komalova L.R. O vozmozhnosti pertseptivno-slukhovogo raspoznavaniya sostoyaniya «agressiya» po ustnoy rechi // Vestnik Moskovskogo gosudarstvennogo lingvisticheskogo universiteta. Seriya Yazykoznanie. 2014. T. 13. № 699. S. 202-214.
Prikladnaya i komp'yuternaya lingvistika / pod red. I.S. Nikolaeva, O.V. Mitreninoy,
T.M. Lando. M.: Lenand, 2016.
Spivak D.L. Lingvistika izmenennykh sostoyaniy soznaniya. L.: Nauka, 1986.
Aue A., Gamon M. Customizing sentiment classifiers to new domains: a case study // Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP). 2005. P. 234-240.
Banea C., Mihalcea R., Wiebe J. Multilingual subjectivity: are more languages better? //
C.-R. Huang, D. Jurafsky (eds.) COLING 2010.

23 rd International Conference on Computational Linguistics. Proceedings of the Conference. 2010. Vol. 2. P. 28-36.
Boiy E., Marie-Francine M. A machine learning approach to sentiment analysis in multilingual
web texts // Inf Retrieval. 2009. № 12 (5).
R. 526-558.
Ceron L., Curini S., Iacus S.-M., Porro G. Every tweet counts? How sentiment analysis of
social media can improve our knowledge of citizens
political preferences with an application to Italy
and France // New Media Soc. 2014. № 16 (2).
R. 340-358.
Gamon M., et al. Pulse: Mining Customer Opinions from Free Text // Proceedings of the 6th International Symposium on Intelligent Data Analysis (IDA). 2005. P. 121-132.
Hogenboom A., Frasincar F., Jong F., Kaymak U. Polarity classification using structure-based vector representations of text // Decis. Support Syst. 2015. № 74. R. 46-56.
Hu M., Liu B. Mining and summarizing customer reviews, in: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2004), 2004.
P. 168-177.
Lövheim H. A new three-dimensional
model for emotions and monoamine neurotransmitters // Medical Hypotheses. 2012. № 78.
R. 341-348.
Lucas G.M., Gratch J., Malandrakis N., Szablowski E., Fessler E., Nichols J. GOAALLL!: Using Sentiment in the World Cup to Explore Theories of Emotion // Image and Vision Computing. 2017. doi:10.1016/j.imavis.2017.01.006 (in Press).
Nakov et al, SemEval-2016 Task 4: Sentiment Analysis in Twitter // Proceeding SemEval. 2016.
P. 1-18.
Pang B., Lee L. Opinion mining and sentiment analysis // Foundations and Trends in Inf. Retrieval. 2008. № 2 (1-2). R. 1-135.
Staiano J., Guerini M. DepecheMood: A lexicon for emotion analysis from crowd-annotated
news // Proceedings of the fifty-second annual meeting of the association for computational linguistics. 2014. R. 427-433.
Wiebe J., Bruce R., O’Hara T. Development and use of a gold-standard data set for
subjectivity classifications // Proceedings of the
37th annual meeting of the Association for Computational Linguistics on Computational Linguistics. 1999. P. 246-253.

For citation:  Kolmogorova, A. V. (2018). Verbal markers of emotions in sentiment analysis researches. Voprosy Kognitivnoy Lingvistiki, 1, 83-93. (In Russ.).

Pages:  83-93

Back to the list