Tambov
All-Russian academic journal
“Issues of Cognitive Linguistics”

DEEP PARSING FOR THE AVIATION INDUSTRY: ADJUSTING ARTEMIS FOR PARSING SIMPLE CLAUSES IN ASD STE-100

DEEP PARSING FOR THE AVIATION INDUSTRY: ADJUSTING ARTEMIS FOR PARSING SIMPLE CLAUSES IN ASD STE-100


Author:  А. Díaz-Galán

Affiliation:  Universidad de La Laguna, Instituto de Lingüística Andrés Bello

Abstract:  The linguistically motivated parser ARTEMIS (Automatically Representing Text Meaning via an Interlingua-based System) has been designed [Periñán-Pascual and Arcas Túnez 2014] with the aim of providing formal representations of natural language fragments enriched with syntactic, semantic and pragmatic information. To test the validity of a parsing system before it is applied to natural language input it is a standard practice to apply it to a controlled language. In this paper we will address the treatment of simple clauses in ASD-STE 100, the controlled natural language employed by the European aviation industry for technical documentation.
We will create or revise lexical and syntactic rules within ARTEMIS in order to make them sensitive to the formal impositions and the restricted communicative functions allowed in this technical language. These rules -which are consistent with the tenets of two linguistic models which substantiate ARTEMIS -namely, Role and Reference Grammar and the Lexical Constructional Model- will account for the first time for each of the different nodes that describe simple sentences in ARTEMIS, in attempt to make it suitable for the parsing of ASD-STE 100.
We will conclude by indicating the areas where further research is needed for the full implementation of the parser.


Keywords:  Functional Grammar Knowledge Base (FunGramKB), ARTEMIS, Natural Language Processing (NLP),
ASD-STE100 Controlled Language, sentence parsing, computational application of RRG.

References:  ASD-STE Simplified Technical English Specification STE-100.International specification for the preparation of technical documentation in a controlled language. Issue 7, January 2017
Cortés-Rodríguez, F. (2016). Towards the computational implementation of Role and Reference Grammar: Rules for the Syntactic Parsing of RRG phrasal constituents. Círculo, 65, 75-108.
Cortés-Rodríguez, F. and Mairal-Usón, R. (2016). Building an RRG computational Grammar. Onomazein 34, 86-117
Díaz-Galán, A. & Fumero-Pérez, M. (2016).Developing Parsing Rules within ARTEMIS: The case of Do Auxiliary Insertion. In C. Periñán Pascual& E. Mestre Mestre (Eds.), Understanding Meaning and Knowledge Representation: From
Theoretical and Cognitive linguistics to Natural Language processing. (pp. 283-302). Cambridge: Cambridge Scholars Publishing.
Díaz-Galán, A. & Fumero-Pérez, M. (2017). ARTEMIS: State of the Art and Future Horizons. Revista de Lenguas para Fines Específicos 23/1, 16-40.
Fumero-Pérez, M. & Díaz-Galán, A. (2017). The Interaction of Parsing Rules and Argument-Predicate constructions: Implications for the structure of the Grammaticon in FunGramKB. Revista
de Lingüística y Lenguas Aplicadas 12: https://doi.org/10.4995/rlyla.2017.5406
Kittredge, R. (2003). Sublanguages and controlled languages. In M. Ruslan (ed.), The Oxford Handbook of Computational Linguistics (pp. 430-447). Oxford: O.U.P.
Khun, Tobias (2014). A survey and classification of Controlled Natural Languages. Computational Linguistics, volume 40, 1.
Mairal-Usón, R. and Cortés-Rodríguez, F. (2017). Automatically Representing Text Meaning via an Interlingua-based System (ARTEMIS). A further step towards the computational representation of RRG. Journal of Computer-Assisted Linguistic Research1, 61-87.
Martín-Díaz, M.A. (2017). An account of English yes/no interrogative sentences within ARTEMIS.Revista de Lenguas para Fines Específicos 23/1, 41-62.
Mayes, P. (2003). A genre analysis of cooking clases in Japan and America. John Benjamins.
Nivre, J. (2010). Handbook of natural language processing second edition. Boca Ratón: Taylor and Francis Group.
Periñán Pascual, C. and Arcas Túnez, F. (2007). Cognitive modules of an NLP knowledge base for language understanding”. Procesamiento del Lenguaje Natural 39, 197-204.
Periñán-Pascual, C. & Arcas Túnez, F. (2014). The implementation of the CLS constructor in ARTEMIS. In B. Nolan & C. Periñán-Pascual, (Eds.), Language Processing and Grammars the role of functionally oriented computational models (pp. 164-196) Amsterdam / Philadelphia: John Benjamins.
Periñán-Pascual, C. &Mairal-Usón, R. (2010). Bringing Role and Reference Grammar to natural language understanding. Procesamiento del Lenguaje Natural, 43, 265-273.
Quirk, R., Greenbaum S., Leech, G. & Svartvik, J. (1985). A comprehensive grammar of the English language. London: Longman.
Ruiz de Mendoza Ibáñez, F.&Mairal-Usón, R. (2008). Levels of description and constraining factors

in meaning construction: an introduction to the Lexical Constructional Model. Folia Linguistica, 42(2), 355-400.
Sag, I., Wasow, T. & Bender, E. (2003). Syntactic Theory: Formal Introduction. Stanford: CSLI Publications
Sharpe, M. (2014). Language forms and rhetorical functions in technical instructions English for Specific Purposes World, Issue 43, Vol. 15.
Schwitter, R. (2010). Controlled Natural Languages for Knowledge Representation. In: Proceedings of COLING 2010, (pp. 1113-1121). Beijing, China.
Van Valin, R. (2005). Exploring the Syntax-Semantics Interface. Cambridge: Cambridge University Press.
Van Valin, R. & La Polla, R. (1997). Syntax. Cambridge: Cambridge University Press.

For citation:  Díaz-Galán, А. (2018). Deep Parsing for the aviation industry: Adjusting ARTEMIS for parsing simple clauses in ASD STE-100. Voprosy Kognitivnoy Lingvistiki, 3, 83-96.

Pages:  83-96

Back to the list



Login:
Password: